Тепловые двигатели ХХI века: применение

В апрельском выпуске приложения «Новые технологии» Владимир Романов предложил существенно новый подход к проблеме совершенствования тепловых двигателей.
Использование – вместо паровых и газовых турбин промышленных и государственных ТЭС и ТЭЦ (работающих на органическом, углеводородном жидком или газообразном топливе) – газопаровых турбин объемного расширения (ТОР) позволяет резко снизить затраты на оборудование и себестоимость вырабатываемых видов энергии. А также – уменьшить удельный расход топлива, повысить эффективный и тепловой КПД и обеспечить полную экологическую чистоту выхлопа (а соответственно – и чистоту атмосферы). Однако необходимо иметь в виду, что в газопаровом теплоэлектрогенераторе доля тепловой энергии будет, по сравнению с электрической, незначительной – хотя она легко преобразуется в тепловую электронагревательными приборами.
Автономные микро- и мини-ТЭЦ предназначены для автономного обеспечения объектов, не имеющих централизованного тепло- и электроснабжения – таких, как частные дома, коттеджи, дачи, базы отдыха, частные или государственные предприятия, фермерские и приусадебные хозяйства, полярные и метеостанции, мобильные подразделения МЧС, погранзаставы и т. д. А также – в качестве мобильного автономного парогенератора для отогревания и запуска аварийных сетей теплоснабжения, для локального обеспечения теплом и электроэнергией отключенных на период устранения аварии от централизованного снабжения объектов жилфонда и промпредприятий в зимнее время.
Газопаровой турбодвигатель в варианте теплоэлектрогенератора генерирует механическую энергию для привода электрогенератора и циркуляционного насоса и тепловую – отработавший пар или конденсат – для потребителей тепловой энергии. Турбодвигатель может работать или только в режиме электрогенератора, при отсутствии необходимости в тепловой энергии (система отопления в летний период), или только в режиме теплогенератора, или в режиме теплоэлектрогенератора, генерируя одновременно тепловую и электрическую энергию.
В отличие от современных тепловых двигателей, используемых для автономной генерации электрической и тепловой энергии (дизельные электростанции, бытовые электрогенераторы с ДВС, электрокотлы, бойлерные установки) на 1 кВт мощности газопаровой турбодвигатель обеспечит:
• в 8‑10 раз меньший удельный расход топлива;
• в 8‑10 раз меньшее удельное потребление атмосферного кислорода;
• в 8‑10 раз меньшее удельное выделение в атмосферу выхлопных газов;
• нулевую токсичность выхлопных газов;
• в 10‑15 раз меньшее выделение в атмосферу удельной теплоты при работе в режиме электрогенератора (и в 25‑30 раз – при работе в режиме теплоэлектрогенератора);
• эффективный – до 75 процентов – КПД, что не менее чем в два раза выше, чем обеспечивают лучшие образцы современных тепловых двигателей;
• термический КПД до 80 процентов при работе в режиме электрогенератора и до 90 процентов – при работе в режиме теплоэлектрогенератора.
При работе теплоэлектрогенератора обеспечивается полное отсутствие вибраций и бесшумный выхлоп.
Удельный вес автономного теплоэлектрогенератора в 4‑5 раз меньше удельного веса автономных бытовых бензиновых электрогенераторов.
После рабочего цикла в двигателе жидкость в состоянии пара или горячего конденсата используется в качестве теплоносителя, циркулирующего по системе отопления индивидуального потребителя тепла или по технологической системе предприятия, использующего тепло для производственных нужд.
Генерация пара осуществляется непосредственно в поточной части турбодвигателя, и он используется, прежде всего, с газами – для осуществления рабочего цикла. А затем – в качестве теплоносителя для потребителей тепловой энергии. Механическая энергия при этом используется для создания избыточного давления теплоносителя (пара, горячей воды, конденсата) и для привода электрогенератора и циркуляционного насоса.
При отсутствии необходимости в тепловой энергии отработавший пар не подается в систему отопления, а конденсируется и охлаждается в конденсаторе-охладителе.
При работе газопарового турбодвигателя можно, по желанию потребителя, генерировать перегретый пар или горячий конденсат требуемой температуры, что обеспечивается регулированием подачи топлива и воды или изменением их соотношения.
Турбодвигатель снабжен насосами для подачи топлива и для циркуляции парообразующей жидкости, а также устройствами регулирования их расхода и соотношения.
После прохождения по тепловому контуру (системе отопления) пар конденсируется, конденсат охлаждается в охладителе и вновь подается насосом в турбодвигатель – то есть используется многократно.
Газообразные и твердые продукты сгорания растворяются в водяном паре, а после его конденсации – остаются в конденсате, то есть в замкнутом контуре турбо-двигателя, Они могут затем, при нейтрализации теплоносителя, быть выделены и утилизированы.
Небольшой автономный тепловой контур – и, соответственно, требуемый для его заполнения объем теплоносителя позволяют использовать в качестве теплоносителя антифриз и обеспечить работу теплоэлектрогенератора без обслуживания в течение нескольких лет и исключить вероятность разрушений при остановке в зимнее время.
Газопаровой турбодвигатель теплоэлектрогенератора работает на всех видах углеводородного топлива, используемого для традиционных ДВС, и обеспечивает реализацию всех известных рабочих циклов ДВС (дизель, карбюратор, впрыск).
Преимущества автономии
Преимущества автономного теплоэлектрогенератора (микро- и мини-ТЭЦ) перед существующим оборудованием, обеспечивающим автономное снабжение индивидуальных потребителей или только теплом (котельные), или только электроэнергией (дизельные электростанции), и перед теплоэлектроцентралями (ТЭЦ), обеспечивающими централизованно потребителей одновременно и тепловой, и электрической энергией, следующие:
• исключаются большие капитальные затраты на линии электропередач и на теплотрассы, использующиеся только в зимний период и требующие обслуживания в начале отопительного сезона и после его окончания;
• исключаются проблемы, связанные с аварийностью, характерной для ЛЭП (обрыв при обледенении или при ураганах) и теплотрасс (прорыв коммуникаций).
Дополнительные потребительские качества мини-ТЭЦ:
• простота конструкции;
• бесшумный и экологически чистый выхлоп;
• минимальный удельный вес и габариты;
• мобильность;
• многофункциональность.
При появлении на рынке теплоэлектрогенератор обеспечит решение проблемы независимого энергообеспечения потребителей, не имеющих централизованного тепло- и электроснабжения, а также резкое снижение потребления углеводородного топлива, атмосферного кислорода, значительное сокращение выбросов тепла в атмосферу и снижение материальных затрат на производство теплоэнергетического оборудования.
А также – обеспечит значительное снижение затрат на генерацию тепловой и электрической энергии, частичное решение проблемы ограничения токсичных и тепловых выбросов, резкое уменьшение потребления атмосферного кислорода – что очень важно для мегаполисов.
Ракетные циклы
В отличие от атмосферных тепловых двигателей, в ракетных двигателях рабочим телом являются только продукты сгорания ракетного топлива. То есть так называемого балластного газа – увеличивающего массу рабочего тела и общее давление за счет нагревания теплотой продуктов сгорания ракетного топлива – в цикле нет. Соответственно – температура продуктов сгорания очень высокая. Кроме того, рабочий цикл ракетных двигателей характеризуется большими расходами топлива и, как и другие типы тепловых двигателей, большими потерями тепловой энергии с продуктами сгорания. Что является серьезным недостатком, не позволяющим обеспечить высокие термический и эффективный КПД рабочего цикла, экономические показатели и показатели эффективности, такие, как удельная тяга, удельный расход топлива, удельный вес. Не обеспечивается эксплуатационная безопасность (аварийные ситуации) и экологическая безопасность по токсичным выбросам и выбросам тепла.
Рабочие циклы всех известных типов ракетных двигателей, использующих в качестве рабочего тела газообразные вещества, не обеспечивают срабатывания большого теплоперепада, так как характеризуются малым периодом преобразования тепловой энергии в потенциальную давления и затем – в кинетическую энергию высокоскоростного потока газа при расширении в сопле.
Известно, что использование в тепловом двигателе в качестве рабочего тела парообразующей жидкости эффективнее, чем использование газообразного. Работа сжатия парообразующей жидкости ниже, чем газа, и, кроме того, при генерации пара из жидкости обеспечивается возможность при одном и том же количестве подводимого тепла осуществить генерацию рабочего тела пара с более эффективными начальными параметрами, более высоким давлением и меньшей температурой. Например, в паротурбинных установках, характеризующихся максимальной агрегатной мощностью.
Задача была решена путем трансформации тепловой энергии в потенциальную энергию давления рабочего тела, для чего в качестве источника рабочего тела в ракетном двигателе используется парообразующая жидкость (ПЖ) – например, вода; а тепловая энергия источника тепла – продуктов сгорания ракетного топлива или атомной энергии – используется для генерации из нее пара, который используется или с продуктами сгорания в виде газопаровой смеси, или в качестве единственного рабочего тела для создания тяги при расширении в сверхзвуковом сопле.
В газопаровом ракетном двигателе (ГПРДЖТ), работающем на жидких компонентах топлива, горючее и окислитель являются теплогенерирующими компонентами. Они генерируют высокотемпературное газообразное рабочее тело – продукты сгорания. Парообразующая жидкость является компонентом, потребляющим значительную долю тепловой энергии продуктов сгорания, и преобразует ее в энергию давления водяного пара, который с продуктами сгорания образует газопаровую смесь, являющуюся рабочим телом.
В газопаровом твердотопливном ракетном двигателе (ГПРДТТ), работающем на унитарном твердом топливе, парообразующая жидкость также является основным компонентом, а газопаровая смесь – рабочим телом.
В паровом ядерном ракетном двигателе (ПЯРД), работающем на энергии, выделяемой твердыми ТВЭЛ, рабочим телом, создающим реактивную тягу, является водяной пар. При этом вся полость камеры выполняет функцию парогенератора (ПГ).
В газопаровых РД зона подачи компонентов топлива, горения и образования газообразных продуктов сгорания у головки камеры или зона горения у поверхности топливного заряда выполняют функцию камер сгорания (предкамер), обеспечивающих эффективное сгорание топлива и максимальное выделение тепловой энергии. Остальная часть камеры, за зоной полного сгорания топлива (до сопла), в которую осуществляется подача воды и в которой образуется газопаровая смесь, выполняет функцию газопароганератора (ГПГ).
В газопаровых и паровом ядерном ракетных двигателях, предназначенных для перемещения объектов в атмосфере Земли, вода размещается в соответствующей емкости на борту. Подача осуществляется насосной или вытеснительной системами подачи.
В газопаровых ракетных двигателях и в паровом ядерном, предназначенных для водных и подводных транспортных средств, в качестве парообразующей жидкости используется забортная вода.
Подача воды в газопаровые ракетные двигатели осуществляется насосной системой или по каналу, сообщающему зону забортной воды в носовой части объекта с предсопловой зоной ГПГ после воспламенения топлива и выхода процесса горения на устойчивый режим.
После воспламенения топлива стартовая тяга осуществляется на продуктах сгорания. После набора объектом скорости осуществляется подача воды, и маршевая тяга создается газопаровой смесью. Вода поступает в полость ГПГ под динамическим напором и за счет эжекции, создаваемой высокоскоростным потоком газопаровой смеси в предсопловой зоне.
По аналогии с прямоточными воздушно-реактивными двигателями газопаровые и паровой ядерный ракетные двигатели, использующие забортную воду, являются прямоточными.
Для впрыска воды используются форсунки, аналогичные топливным. Впрыск воды осуществляется в продукты сгорания за зоной полного сгорания топлива.
Вода перед подачей в газопарогенератор может использоваться для охлаждения камеры сгорания и проходить по системе ее охлаждения, при этом охлаждения остальной части ГПГ и сопла из‑за низкой температуры газопаровой смеси не требуется.
В газопаровых твердотопливных РД, используемых в воздушных объектах одноразового использования (например, в ракетах), подача воды из бортовой емкости (ампулы) в полость ГПГ обеспечивается простейшими вытеснительными системами подачи с использованием реактивной силы работающего двигателя.
Топливный заряд (шашка) устанавливается в корпусе ГПГ с возможностью перемещения (скольжения) относительно его стенок в направлении движения объекта. В теле шашки выполняются не сквозные параллельные оси каналы, а ампула с водой размещается перед шашкой и выполняется из водостойкого, герметичного, эластичного и сгораемого материала, и также входит в водоподающие каналы шашки, повторяя и заполняя их внутренний контур.
Возможен вариант образования емкости для воды без использования специальной емкости на борту, для чего поверхности шашки, обращенные к воде (передний торец и каналы), покрываются водостойким, герметичным, сгораемым покрытием.
Возможен вариант подачи воды по каналам, выполненным и в теле шашки, и в цилиндрическом корпусе газопарогенератора, или по канавкам, выполненным на наружной цилиндрической поверхности и в теле шашки, что повысит скорость и эффективность парообразования.
Для предотвращения подачи воды в зону горения и исключения снижения теплопроизводительности топлива водоподающие канавки и каналы шашки могут бронироваться от емкости (полости) с водой до предсопловой зоны.
Ракетные двигатели, использующие в качестве дополнительного рабочего тела атмосферный воздух, являются прямоточными воздушно-ракетными двигателями (ПВРД).
Ядерные двигатели
В паровых ядерных ракетных двигателях (ПЯРД), используемых для мобильных, перемещающихся в атмосфере или в безвоздушном пространстве объектов или для стационарных – например, используемых для генерации теплоносителя, вода подается в атомный реактор насосом из соответствующей емкости (бака) под избыточным давлением, превышающим рабочее давление в ПГ.
При использовании для генерации пара забортной воды двигатель является прямоточным, а забортная вода – условным рабочим контуром.
По аналогии с известными газовыми ЯРД в ПЯРД источники ядерной тепловой энергии атомного реактора ТВЭЛы и управляющие реакцией стержни могут располагаться непосредственно в парогенераторе, при этом реализуется простая, эффективная и экономичная высокоэнергетическая одноконтурная схема.
Кроме того, ПЯРД может быть выполнен по двухконтурной схеме, аналогичной двухконтурной схеме АЭС. Теплоноситель первого контура водо-водяного реактора прокачивается по теплообменнику, расположенному в полости парогенератора, передавая теплоту теплоносителя первого контура рабочему телу второго условного контура – забортной воде.
Вода в зону ТВЭЛов реактора, находящуюся под высоким рабочим давлением образующегося сухого перегретого пара, подается насосом через систему охлаждения реактора или непосредственно в реактор. После разгона объекта забортная вода подается за счет динамического напора и за счет эжекции за реактор в предсопловую зону парогенератора, омывая и дополнительно охлаждая реактор, или непосредственно в предсопловую зону.
Вместе с тем, одноконтурный вариант ПЯРД с использованием высокотемпературного пара, генерируемого в реакторе, для создания тяги из‑за скоротечности цикла генерации и расширения пара не обеспечивает полного использования его тепловой энергии и, соответственно, максимального термического КПД. Кроме того, отработавший радиоактивный пар, поступая после выхлопа и конденсации в забортную воду, наносит вред окружающей среде.
Для достижения максимальных термического и эффективного КПД за счет максимального использования ядерной тепловой энергии и расширения диапазона срабатываемого двигателем теплоперепада генерация пара при одноконтурной и двухконтурной схемах может осуществлятся в два этапа.
Этапы генерации
Полость парогенератора содержит две зоны генерации.
В первой, в которой установлены ТВЭЛы реактора (одноконтурная схема) или теплообменник первого контура (двухконтурная) и в которую подается лишь часть поступающей в двигатель воды, генерируется сухой перегретый пар. Во второй зоне, в которую дополнительно подается вода, за счет теплоты сухого перегретого пара генерируется насыщенный пар, который и является окончательным рабочим телом, создающим тягу при расширении в сопле.
Для более полного использования кинетической энергии выходящего за пределы сопла высокотемпературного скоростного потока пара и ускорения его конденсации и гашения парового колокола, например, с целью маскировки, в поток пара за соплом через водозаборники может осуществляться подача дополнительной забортной воды для генерации дополнительного пара и создания пароводометной тяги.
В ПЯРД расход воды определяется заданной тягой, мощностью атомного реактора и с учетом схемы – одноконтурная или двухконтурная. Для водных и подводных судов с ПЯРД, для исключения радиационного загрязнения акватории порта стоянки и прибрежной зоны, выход за их пределы может первоначально осуществляться по двухконтурной схеме с последующим переходом на одноконтурную схему.
Давление продуктов сгорания без изменения расхода подаваемого топлива и, соответственно, их количества в газовой зоне, примыкающей к головке, увеличится до давления газопаровой смеси за счет подпора образующейся газопаровой смесью. Соответственно, объем газов уменьшится, при этом дополнительно возрастет за счет сжатия их температура в зоне горения, что будет способствовать более полному сгоранию топлива с максимальным выделением тепловой энергии.
Все варианты ракетных и ядерных двигателей защищены патентом РФ № 2380563.
Провод, АЭС, Генерация, Котельная, ЛЭП, Мини-тэц , Мощность, Радиация , Сети , Теплоснабжение, Топливо, Турбины, ТЭС , ТЭЦ, Энергоснабжение, Электроэнергия , Энергия , Кабельная арматура, Парогенератор, Электростанция,
Отправить на Email
-
22.12.2020 13:23:00Поздравляем с Днем энергетика!
30295
Поздравления с Днем энергетика и Новым 2021 годом
Коллектив редакции "Энергетики и промышленности России" поздравляет всех читателей с профессиональным праздником - Днем энергетика!
Так исторически сложилось, что этот праздник ...
Кабельная арматура, Газпром, ГРЭС, ЕЭС, Изолятор, Кабель, Мощность, МРСК, ОГК, Сети, ТГК, Тепловые сети, Теплоснабжение, Трансформаторы, Турбины, ТЭЦ, Электричество, Электроэнергия, Энергия, Энергосбережение, Провод, Электростанция, Электроэнергетика, Энергетические системы, СРО
-
14.01.2015Блиц
1100
Кабельная арматура, АЭС, ЕЭС, ЛЭП, Мощность, МЭС, Подстанции, Росатом, Сети, Трансформаторы, ФСК, Энергоснабжение, Электроэнергия, Энергия, Электрические сети, Электростанция, СРО
14.01.2015 Алексей НЕБЕРА, директор направления«РТСофт»: средства информационной безопасности для управления энергообъектами1605
В рамках Единой национальной электрической сети и в распределительном сетевом комплексе выполняются масштабные программы создания систем сбора и передачи информации.
Электрические сети, Напряжение, Подстанции, Сети, Smart Grid, Кабельная арматура, Электроэнергетика, Энергетические системы
14.01.2015 Подготовила Ирина КРИВОШАПКАМощность стала товаром, который можно украсть, или Кто заявит о коррупции публично?1031
В прошлом номере «ЭПР» опубликовала материал о коррупционном скандале между компанией IКЕА и поставщиками электроэнергии в Санкт-Петербурге. Тема получила продолжение.
Провод, Мощность, Сети, Электроэнергия, Энергия, Кабельная арматура, СРО
14.01.2015 Беседовала Ольга МАРИНИЧЕВАЭнергетический бизнес отражает атаки2570
Обеспечение информационной безопасности во всех ее видах – один из приоритетов в политике крупных энергокомпаний России в последнее десятилетие.
Кабельная арматура, АСКУЭ, Кабель, Подстанции, Сети, Энергоснабжение, Электроэнергия
-
12.05.2018 05:55:14Цифровизация: от концепции – к практическим решениям
25430
Круглый стол «Цифровые технологии в управлении энергетическими системами», организованный «Энергетикой и промышленностью России» в рамках Российского международного энергетического форума, мы стремились сориентировать на предельно конкретные вопросы. В начале мероприятия модератор – главный редактор «ЭПР» Валерий Пресняков отметил, что участникам предоставляется возможность рассказать о своих практических решениях, так или иначе нацелен...
Инновации
12.06.2018 19:59:26 Славяна РУМЯНЦЕВАЦифровизация энергетики: от «интеллектуальных» турбин до «умных» сетей24206
Никогда прежде мир не был так тесно связан и настолько «оцифрован», как сегодня. Дигитализация уже превратилась в неотъемлемую часть настоящего.
Цифровизация, Smart Grid, Инновации, Турбины
19.06.2018 13:52:08 Павел ШАЦКИЙ, первый заместитель генерального директора ООО «Газпром энергохолдинг»ДПМ-2: драйвер роста или обуза для потребителей?21231
Философский вопрос о первичности «курицы или яйца» в случае с перспективами российской энергетики звучит так: стимулировать ли инвестиции в энергетику с целью технологического прорыва в целом ряде секторов экономики или сдерживать тарифы, чтобы дать фору для развития несырьевым секторам?
Электроэнергетика, Инвестиции
21.10.2018 06:54:56К обновлению с КОММодом: роли и декорации очередной модернизации14178
ДПМ-2, ДПМ-штрих и, наконец, новое, пока неизвестное широкой отраслевой публике понятие – КОММод, обозначают одну программу, цели и суть которой заключаются в модернизации генерирующих мощностей отечественной энергетики. Все просто и сложно одновременно, поскольку профессиональное сообщество разделилось на тех, кто ждет от грядущей программы прорывных результатов, и на тех, кто осторожно заявляет о назревших рисках.
Модернизация в энергетике
30.05.2018 00:55:50 Ирина КРИВОШАПКАЭнергоэффективность как экономия и безопасность11673
Благодаря энергосервисным контрактам многие российские регионы экономят миллионы, направляя их на собственное развитие. Но похвастаться победами может далеко не каждый субъект РФ. Директор Ассоциации региональных операторов капитального ремонта Анна Мамонова отмечает: исходя из минимального размера взноса, обеспечить энергоэффективность во всех домах невозможно. Профессиональное сообщество совместно с ...
Энергосбережение, Энергоэффективность