Новая термогенерирующая установка - Энергетика и промышленность России - № 10 (174) май 2011 года - WWW.EPRUSSIA.RU - информационный портал энергетика
16+
Регистрация
РУС ENG
Расширенный поиск
http://www.eprussia.ru/epr/174/13013.htm
Газета "Энергетика и промышленность России" | № 10 (174) май 2011 года

Новая термогенерирующая установка

Новые технологии Николай КУРНОСОВ

Установка содержит теплообменную обойму с выходным патрубком.

Внутри нее установлена цилиндрическая вихревая труба, состоящая из трех частей: первого цилиндрического корпуса с тангенциальным сопловым вводом и выходом на одном конце, второго цилиндрического корпуса с тормозным устройством и выходом на противоположном конце и центральной части в виде полой спирали с входным и выходным патрубками, витки которой жестко соединены друг с другом.

Технический результат: повышение эффективности теплопередачи, расширение функциональных возможностей.



Система теплоснабжения

Наиболее близкой к авторскому устройству является «Система теплоснабжения потребителей». Она содержит замкнутый контур циркуляции жидкого теплоносителя, теплогенератор, побудитель движения теплоносителя с приводом, расширительный бак, прямой и обратный трубопроводы, запорно-регулирующую арматуру и устройство автоматического регулирования температуры теплоносителя с датчиком температуры и цепями управления.

Система снабжена аккумуляционным баком, связанным с линиями горячего и холодного водоснабжения и теплообменником, установленным внутри него, где также размещены датчик температуры и теплогенератор, который выполнен в виде вихревой трубы с тангенциальным вводом теплоносителя через конфузор и форсунку от побудителя движения.

На выходе теплоносителя из вихревой трубы размещен гаситель скорости, устройство автоматического регулирования температуры дополнительно содержит блок управления, связанный цепями управления с датчиком температуры и приводом побудителя движения, который установлен на аккумуляционном баке, бак соединен с дополнительно введенным трубопроводом, который также соединен с побудителем движения, прямой трубопровод подключен через запорно-регулирующую арматуру к аккумуляционному баку, а обратный соединен с дополнительным трубопроводом через запорно-регулирующую арматуру.

Недостатком агрегата является понижение эффективности теплопередачи от теплогенератора в виде вихревой трубы к обрамляющему ее теплообменнику, так как вода, поступающая в теплообменник, попадает в «холодную» зону вихревой трубы, что снижает динамику теплообмена.

Кроме того, прототип имеет ограниченные функциональные возможности, так как теплообменник предназначен для нагрева холодной воды и имеет один независимый контур циркуляции.



Авторское устройство

Технической задачей, решаемой заявляемым автором устройством, является повышение эффективности теплопередачи за счет увеличения поверхности теплообмена внутри вихревой трубы, а также расширение функциональных возможностей путем осуществления одновременного нагрева различных не смешивающихся между собой жидкостей.

Задача решена тем, что в термогенерирующей установке, содержащей теплообменную обойму с выходным патрубком, внутри которой установлена цилиндрическая вихревая труба с тангенциальным сопловым вводом и выходом на одном конце первого цилиндрического корпуса, тормозным устройством и выходом на противоположном конце второго цилиндрического корпуса, согласно изобретению предусмотрено следующее. Центральная часть цилиндрической вихревой трубы выполнена в виде полой спирали с входным и выходным патрубками, витки которой жестко соединены друг с другом.

Выполнение спирали двух- n-заходной, многорядной расширяет функциональные возможности заявляемого устройства, так как одновременно можно осуществить нагрев различных жидкостей, используя для каждой автономный контур циркуляции.

Выполнение спирали другого профиля, например полукруглой, необходимо для снижения сопротивления при движении внутри вихревой трубы, если будет использован теплоноситель с повышенной вязкостью.

Выполнение витков спирали под углом 10-14º относительно перпендикуляра к оси вихревой трубы необходимо для создания вихревого направления поступающего в вихревую трубу теплоносителя, ускорения вращения потока по направляющим канавкам, образованным между витками спирали.

Установка на входе в спираль на заданном расстоянии лопастей, а на выходе тормоза в случае минимального количества витков в контуре способствует более интенсивному, равномерному прогреву всех слоев жидкости, поступающей в спираль, так как жидкость приобретает вращательное движение, а торможение на выходе способствует переходу кинетической энергии в тепловую.

Перечисленные конструктивные отличия позволяют решить поставленную техническую задачу: повысить эффективность теплопередачи, расширить функциональные возможности заявляемого устройства по сравнению с прототипом.

Установка содержит теплообменную обойму с выходным патрубком и герметизированными отверстиями для других патрубков. Внутри теплообменной обоймы установлена цилиндрическая вихревая труба, состоящая из трех частей: первого цилиндрического корпуса, второго цилиндрического корпуса и центральной части, выполненной в виде полой спирали со входом и выходом. Первый цилиндрический корпус снабжен тангенциальным сопловым вводом и имеет выход. Второй цилиндрический корпус содержит тормозное устройство, например, в виде крестовины, соединенной с корпусом (не показано), и выход.

Витки полой спирали навиты под углом 10-14º относительно перпендикуляра к оси вихревой трубы и жестко соединены друг с другом. Угол наклона совпадет с углом, под которым теплоноситель движется внутри вихревой трубы. При использовании теплоносителя с высокой вязкостью целесообразно витки спирали выполнять другой формы, например полукруглой, квадратной или треугольной. Это необходимо для снижения сопротивления внутри вихревой трубы, поверхность которой в этом случае будет гладкой. При определенных диаметрах трубки спирали целесо­образно на входе в нее на заданном расстоянии ставить лопасти, заставляющие вращаться жидкость внутри спирали.

При минимальном количестве витков спирали на выходе из нее необходимо устанавливать тормоз, например, в виде крестовины. Торможение на выходе позволит интенсивнее нагревать жидкость. Кроме того, спираль выполняется из материала высокой теплопроводности, что повышает теплообмен.



Метод работы

Работа устройства осуществляется следующим образом.

Теплоноситель – вода под давлением, создаваемым насосом, через тангенциальный сопловый ввод по касательной к внутреннему диаметру поступает в первый цилиндрический корпус, где приобретает вращательное движение. Так как диаметр вихревой трубы значительно больше диаметра тангенциального соплового ввода, происходит изменение скорости движения теплоносителя, что приводит к его нагреву. Поступая в центральную часть вихревой трубы, образованную витками полой спирали, теплоноситель ускоряет свое движение, так как траектория движения вихря совпадает с углом наклона канавок, образованных внутри вихревой трубы витками полой спирали. Пройдя центральную часть, теплоноситель поступает во второй цилиндрический корпус, где установлено тормозное устройство, например, в виде крестовины.

Теплоноситель рассекается на несколько потоков. Изменение направления движения скорости и давления теплоносителя приводит к возрастанию его температуры. Через выход теплоноситель поступает в теплообменную обойму, заполняя ее. Диаметр выхода несколько больше, чем диаметр тангенциального соплового ввода. Это необходимо для равномерного вывода теплоносителя из вихревой трубы. Часть теплоносителя выводится в теплообменную обойму через выход в первом цилиндрическом корпусе. Через выходной патрубок теплоноситель из теплообменной обоймы поступает к насосу и далее – в магистраль отопления.

Одна термогенерирующая установка является модулем. Для получения большей производительности модули могут быть объединены в сборки с подбором и установкой насосов соответствующей мощности.



Предназначение

Устройство может работать при использовании в качестве теплоносителя сжатого воздуха, подаваемого в установку компрессором. Закрученный поток сжатого воздуха, передвигаясь по вихревой трубе, разделяется на холодную и горячую составляющие. Холодная составляющая будет отводиться из вихревой трубы через выход первого цилиндрического корпуса, а горячая, пройдя тормозное устройство, через выход второго цилиндрического корпуса, поступая в теплообменную обойму.

Так как горячая составляющая сжатого воздуха при разделении отбрасывается к стенкам вихревой трубы, то процесс нагрева различных жидкостей, подаваемых в полую спираль, осуществляется так же интенсивно, как и при использовании жидкого теплоносителя, что дополнительно способствует снижению температуры холодной составляющей. Если выход первого цилиндрического корпуса будет удлинен за пределы теплообменной обоймы, то холодную составляющую можно использовать для охлаждения различных объектов.

Подогрев различных жидкостей осуществляется следующим образом. Через патрубок жидкость подается в полую спираль. Проходя лопасти, она приобретает вращательный характер, и ее слои, вращаясь, перемешиваются. Поступающая в спираль жидкость соприкасается с наиболее горячей частью вихревой трубы с той зоной, где происходит концентрация тепловыделения. В результате интенсивного теплообмена жидкость нагревается и, пройдя свой контур циркуляции, через выходной патрубок и тормоз поступает к потребителю.

Так как конструкция обеспечена несколькими независимыми контурами циркуляции, можно осуществить нагрев разнородных, несмешивающихся жидкостей, пропуская их с разными скоростями и нагревая до заданной температуры. За счет осуществления встречного движения жидкости по спирали происходит выравнивание температуры по всей длине контура и более интенсивный теплообмен.

Опытным путем подобраны соотношения размеров заявляемого устройства: диаметр вихревой трубы, диаметр тангенциального соплового ввода, диаметры выходов и патрубков, диаметр теплообменной обоймы, а также угол наклона и диаметр полой трубки, из которой выполнена спираль.

Проведенные испытания показали, что заявляемое устройство отличается надежностью, простотой и эффективностью работы.

Термогенерирующее устройство можно использовать для отопления и горячего водоснабжения жилых зданий, складских, производственных и иных помещений, а также нагрева различных жидкостей в химической, сельскохозяйственной, пищевой отраслях промышленности. Холодная составляющая при использовании в качестве теплоносителя сжатого воздуха может быть использована для охлаждения различных объектов.

Отправить на Email

Для добавления комментария, пожалуйста, авторизуйтесь на сайте

Также читайте в номере № 10 (174) май 2011 года:

  • Блиц

    Государственная дума приняла в первом чтении поправки к закону об энергосбережении, внесенные правительством. Речь идет о переносе сроков обязательной установки приборов учета газа на 1 января 2015 года в отношении собственников жилых домов и помещений в многоквартирных домах, а также собственников дачных домов. Это обусловлено дороговизной приборов учета газа, цена которых значительно выше, чем у приборов учета иных энергоресурсов. ...

  • Вопрос о «Белене» опять повис в воздухе
    Вопрос о «Белене» опять повис в воздухе

    Россия и Болгария отложили на три месяца все работы по строительству атомной электростанции «Белене». ...

  • Питер форсирует ремонт котельных
    Питер форсирует ремонт котельных

    В Санкт-Петербурге в этом году реконструируют 16 зон теплоснабжения. ...

  • На Калужской ТЭЦ готова газотурбинная установка
    На Калужской ТЭЦ готова газотурбинная установка

    На Калужской ТЭЦ (филиал ОАО «Квадра») 16 мая состоялась торжественная церемония по случаю завершения строительства газотурбинной установки 30 МВт. ...

  • «ЭнТерра»: подстанции «под ключ». Экономим, но не на качестве
    «ЭнТерра»: подстанции «под ключ». Экономим, но не на качестве

    В электросетевом строительстве заказчик предъявляет к энергообъектам особые требования: компактность, надежность, высокая заводская готовность, минимум затрат при эксплуатации. ...